Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Films

نویسندگان

  • Loïc Loisel
  • Ileana Florea
  • Costel-Sorin Cojocaru
  • Beng Kang Tay
  • Bérengère Lebental
چکیده

Nano and femtosecond laser writing are becoming very popular techniques for patterning carbon-based materials, as they are single-step processes enabling the drawing of complex shapes without photoresist. However, pulsed laser writing requires costly laser sources and is known to cause damages to the surrounding material. By comparison, continuous-wave lasers are cheap, stable and provide energy at a more moderate rate. Here, we show that a continuous-wave laser may be used to pattern vertical nano-crystalline graphite thin films with very few macroscale defects. Moreover, a spatially resolved study of the impact of the annealing to the crystalline structure and to the oxygen ingress in the film is provided: amorphization, matter removal and high oxygen content at the center of the beam; sp(2) clustering and low oxygen content at its periphery. These data strongly suggest that amorphization and matter removal are controlled by carbon oxidation. The simultaneous occurrence of oxidation and amorphization results in a unique evolution of the Raman spectra as a function of annealing time, with a decrease of the I(D)/I(G) values but an upshift of the G peak frequency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-quality thin graphene films from fast electrochemical exfoliation.

Flexible and ultratransparent conductors based on graphene sheets have been considered as one promising candidate for replacing currently used indium tin oxide films that are unlikely to satisfy future needs due to their increasing cost and losses in conductivity on bending. Here we demonstrate a simple and fast electrochemical method to exfoliate graphite into thin graphene sheets, mainly AB-s...

متن کامل

Mechanical properties of nanoparticle chain aggregates by combined AFM and SEM: isolated aggregates and networks.

Mechanical properties of nanoparticle chain aggregates (NCA) including tensile strength and Young's modulus were measured using an instrument incorporating an AFM tip under SEM imaging. The NCA were studied individually and as network films. Carbon NCA were made by laser ablation of graphite, and SnO2 NCA were made by oxidation of a tin compound. The films were deformable and showed elastic beh...

متن کامل

Grayscale image recording on Ge2Sb2Te5 thin films through laser-induced structural evolution

Chalcogenide Ge2Sb2Te5 thin films have been widely exploited as binary bit recording materials in optical and non-volatile electronic information storage, where the crystalline and amorphous states are marked as the information bits "0" and "1", respectively. In this work, we demonstrate the use of Ge2Sb2Te5 thin films as multi-level grayscale image recording materials. High-resolution grayscal...

متن کامل

Synthesis and characterization of a-CNx thin films prepared by laser ablation

Amorphous carbon nitride (a-CNx) thin films were synthesized by laser ablation on silicon (100) and glass substrates. The plasma was produced using the fundamental line of a Nd:YAG laser with 28 ns pulse duration focused on a graphite target. Deposition of a-CN films was carried out in a nitrogen atmosphere in the range of pressures from 3 x 10 to 1.5 x 10 Torr. The laser fluences used in this ...

متن کامل

Mechanical Properties and Microstructural Evolution of Ta/TaNx Double Layer Thin Films Deposited by Magnetron Sputtering

Crystalline tantalum thin films of about 500nm thickness were deposited on AISI 316L stainless steel substrate using magnetron sputtering. To investigate the nano-mechanical properties of tantalum films, deposition was performed at two temperatures (25°C and 200°C) on TaNx intermediate layer with different N2/Ar flow rate ratio from 0 to 30%. Nano-indentation was performed to obtain the mechani...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016